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We show that, by inserting suitable finite networks at a site of a chain, it is possible to realize filters and
high-pass/low-pass devices for solitons propagating along the chain. The results are presented in the framework
of coupled optical waveguides; possible applications to different contexts, such as photonic lattices and Bose-
Einstein condensates in optical networks are also discussed. Our results provide a first step in the control of the
soliton dynamics through the network topology.

DOI: 10.1103/PhysRevE.73.066624 PACS number�s�: 42.65.Tg, 02.10.Ox, 05.45.Yv, 42.81.Dp

I. INTRODUCTION

Soliton dynamics in discrete structures features remark-
able effects, presenting a very high—theoretical and
experimental—interest �1–3�. In particular, a very active and
well-established field of research is the study of wave trans-
mission in presence of nonlinearity on translationally invari-
ant chains, where solitonic and breather solutions have been
extensively studied �2,4�. For solitons propagating on more
general discrete structures, the role played by the topology of
the network �i.e., how the sites of the network are connected
between them� and the interplay and competition of topology
and nonlinearity in the soliton dynamics are still an open
problem, and one expects that new interesting phenomena
should arise. The interest on this topic is also motivated by
the fact that in several systems, like networks of nonlinear
waveguide arrays �3�, arrays of super conducting networks
�5�, Bose-Einstein condensates in optical lattices �6�, and
silicon-based photonic crystals �7�, one can, at some extent,
engineer the shape �i.e., the topology� of the network. On
this respect, the effects of inhomogeneity on soliton propa-
gation and on localized modes have been investigated in Y
junctions �8,9�, junctions made of two infinite waveguides
and waveguide couplers �10�, lattices featuring topological
dislocations created by the interference between plane waves
and waves with nested vortices �11�, and scattering through a
topological perturbation �12�.

In this paper we consider solitons propagating on inhomo-
geneous discrete structures, and we show that it is possible to
use the inhomogeneity—i.e., the shape of the network—to
realize filters for the soliton momentum �allowing for the
propagation of solitons with a given velocity� and high-pass/
low-pass devices �allowing for the propagation of solitons
with high/low velocity�. In particular, we will focus on the
discrete nonlinear Schrödinger equation �DNLSE� on inho-
mogeneous networks: the DNLSE is a paradigmatic example
of nonlinear model which has been extensively studied on
regular lattices. Indeed it describes the properties of several
real systems, like coupled waveguides arrays �3�, nonlinear
discrete electrical networks �13�, and Bose-Einstein conden-
sates in optical lattices �14� �we also refer to the reviews

�2,15� for more references on applications of the DNLSE�. In
particular, soliton propagation has been experimentally ob-
served in coupled optical waveguides �16� and these systems
represent a promising physical setup for the study of the
effects of topology on soliton propagation. A topological en-
gineering of waveguides appears to be a realizable task, as
illustrated by Fig. 1. Other experimental systems could be
used to engineer and build inhomogeneous networks. Two-
dimensional optically induced nonlinear photonic lattices
have been realized and discrete solitons observed �17�: using
a suitable interference of two or more plane waves in a pho-
tosensitive material one could in principle create a non-
translationally invariant photonic lattice. For Bose-Einstein
condensates in optical lattices, discrete gap solitons and self-
trapped states have been recently observed in linear arrays
�18�: the control of the lattice shape in this system is realized
properly superimposing the laser beams creating the optical
lattices, as discussed in Ref. �19�.

Here we address the issue of filtering the soliton propaga-
tion in the DNLSE, focusing on a particular class of inho-
mogeneous networks, built by adding a finite discrete net-
work G0 to a single site of a linear chain �see Fig. 1�. We

FIG. 1. An inhomogeneous system of coupled nonlinear
waveguides extending in the z direction, obtained arranging the
waveguides in a chain and attaching another finite chain in the
waveguide 0. In the inset we plot the corresponding graph: each
waveguide is a site of the graph, and two coupled waveguides are
connected by a link. The attached graph G0 is here a finite chain of
length 3; Gr is obtained subtracting � from G0.
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refer to the physical setup of optical waveguides, however,
the obtained results apply to the different physical settings
described by the DNLSE. Of course, one can imagine and
engineer a huge variety of network topologies; our aim is to
exploit the interplay and competition of topology and non-
linearity and to show that the realistic topology obtained in-
serting properly chosen finite networks at a site of a chain
can be used to build a novel class of filters for the soliton
motion. By using a general criterion, derived within a linear
approximation, relating the transmission properties of a soli-
ton to the topology of the inserted network �12�, we address
the possibility of filtering the soliton propagation by suitably
choosing the topology of the network. These analytical re-
sults are checked by a numerical study of the full nonlinear
evolution.

The plan of the paper is the following: the next section is
devoted to the introduction of the DNLSE on graphs and of
the general approach used in the paper. In Sec. III we discuss
the large-fast soliton regime and the general criterion for
total transmission and reflection of solitons on inhomoge-
neous chains �12�. In Sec. IV we show that by using this
general criterion one can choose the topology of the inserted
network to realized filters and high-pass and low-pass de-
vices. The transmission coefficient for the soliton propaga-
tion along the chain is computed for the proposed filters and
high-pass and low-pass devices, and their efficiency dis-
cussed. In Sec. V we present our conclusions and future per-
spectives.

II. DNLSE ON GRAPHS

The DNLSE on a general network reads

i
�En

�z
= − �

j=1

N

�n,jEj + ��En�2En. �1�

In the context of coupled optical waveguides En�z� is the
electric field in the nth waveguide �n , j=1, . . . ,N, with N
being the total number of waveguides� and � is proportional
to the nonlinear Kerr coefficient. When � has negative �posi-
tive� sign the medium has self-focusing �-defocusing� prop-
erties. The waveguides extend in the z direction, so one has
that the soliton arising from the balance between discrete
diffraction and nonlinearity are the discrete version of spatial
optical solitons. In Eq. �1� the normalization is chosen to be
�n�En�z��2=1 and �n,j is proportional to the mode overlap of
the electric fields of the waveguides n and j �3� and it is
non-0 if n and j are nearest-neighbor waveguides, and 0
otherwise.

If N identical waveguides are arranged to form a chain,
then Eq. �1� assumes the usual form �2�,

i
�En

�z
= − �c�En+1 + En−1� + ��En�2En, �2�

where �n,n±1=�c. A �dispersion-managed� modulation ��z�
of the kinetic term has been discussed in Ref. �20�. If, on the
other hand, the waveguides are arranged on the sites of a
nontranslational invariant network, a space modulation of the
kinetic term occurs, even if � does not depend on z.

The DNLSE on a homogeneous chain is not integrable
�21�; nevertheless, solitonlike wave packets can be present
�22,23�, and the stability conditions of these solitonlike so-
lutions may be discussed within a standard variational ap-
proach �23,24,14�. Let us consider, at z=0, a Gaussian wave
packet, centered in �0, with initial momentum k, and width
�0. From the variational equations of motion, one sees that
k�z�=k is conserved. If ��0 ���0�, one can have a soliton
solution only if cos k�0 �cos k�0�. In the following, we
assume ��0 and � /2	k	� �positive velocities�. A varia-
tional solitonlike solution is then obtained for �0
1 when �
is given by �14�

�sol � 4�c
��

�cos k�
�0

. �3�

The stability of variational solutions can be numerically
checked, showing that the shape of the solitons is preserved
for long times. In the following, we use the term “solitons”
to denote the solutions of the variational equations. We note
that even if we are considering the large soliton regime ��

1�, our wave packet cannot be described as continuous,
since its spatial modulation is of the same order of the lattice
spacing. Therefore the packet is sensitive to the discrete na-
ture of the support �e.g., the wave-packet velocity is propor-
tional to sin�k� and not to k�.

In this paper, we study the more complex situation, where
an inhomogeneity is originated by a topological modification
of the discrete lattice �see Fig. 1�. We focus on the case
where the graph G, describing the position of the
waveguides, is obtained by attaching a finite graph G0 to a
single site of the chain �25�. In Ref. �26� we scattering of
solitons through a topological perturbation linked at two sites
of the linear chain has been considered, and in Ref. �27� an
external Fano degree of freedom is coupled to several sites of
the chain: here we will confine ourself to the situation in
which a finite discrete network is attached at a single site of
the chain, showing that, properly choosing the topology and
the parameters of the waveguides composing the inserted
network, one can realize different kinds of soliton filters. In
Fig. 1 the attached graph G0 is a chain of three sites
�each site corresponds, of course, to a waveguide�. We de-
note the generic waveguides with latin indices i , j , . . . . A site
of the graph will be denoted by an integer number or by a
greek letter � ,� , . . ., according as the corresponding wave-
guide belongs to the linear chain or to the graph G0, respec-
tively. A single link connects the waveguide 0 of the chain
with the waveguide � of the graph G0. Hereafter, we suppose
that the waveguides of the infinite chain are identical, so that
the coupling term between two generic neighboring sites of
the infinite chain is set to the constant value �c. The most
general framework where the problem may be studied is pro-
vided by graph theory �28�: one can introduce the �general-
ized� adjacency matrix A0 of G0, defining Ai,j

0 =�i,j when i
and j are nearest-neighbors sites belonging to G0, and 0 oth-
erwise. Furthermore, we denote with Gr the graph obtained
from G0 by cutting the site �, and with Ar its generalized
adjacency matrix: e.g., attaching a finite chain of three sites
��, �, and �, see the inset of Fig. 1�, to 0, Gr is a chain of
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length two having two sites ��, and �� and Ar is a 2�2
matrix having vanishing diagonal elements, and ��,� as non-
diagonal terms. An energy level of G0 is defined as an eigen-
value of the adjacency matrix A0, and similarly an energy
level of Gr is an eigenvalue of Ar.

The scattering of a soliton through this topological pertur-
bation has been numerically studied in the following way. At
z=0, we consider a Gaussian soliton, far left from 0 �i.e.,
�0�0�, moving towards n=0 �sin�k��0�, and with a width
�0 related to the nonlinear coefficient � through Eq. �3�; i.e.,
we set En�z=0�=K exp�−�n−�0�2 /�0

2+ ik�n−�0��, where K is
just a normalization factor. We numerically evaluate the non-
linear evolution of the electric field En�z� at z�0 from Eq.
�1�. The center of mass is defined as ��z�=�nn�En�z��2 and
the group velocity is v=d� /dz. For a soliton one has v
�2�c sin k and, when z=zs���0� /2�c sin�k�, the soliton
scatters through the finite graph G0. At a position z well after
the soliton scattering �z
zs�, we evaluate the reflection and
transmission coefficients R and T using the formulas: R
=�n�0�En�z��2 and T=�n�0�En�z��2.

III. A GENERAL RESULT FOR LARGE FAST SOLITONS

Let us introduce an important class of soliton solutions �to
which we refer as large-fast solitons�, whose scattering
through a topological inhomogeneity can be analytically
studied using a linear approximation �12�. The interaction
between a soliton on a chain and a defect is characterized by
two length scales �29�: the length of the soliton-defect inter-
action zint=�0 /2�c sin k and the soliton dispersion space
�i.e., the length scale in which the wave packet will spread in
the absence of interaction� zdisp=�0 / �8�c sin�1/2�0�cos k�.
When �0
1 and zint�zdisp, the soliton is very large with
respect to the defect dimensions and it can be considered as
a set of noninteracting plane waves while it experiences scat-
tering by the graph. We extend this analysis to the scattering
of a soliton through the attached graph G0 and we compute
the soliton transmission by considering, in the linear regime,
the transport coefficients of a plane wave across the topologi-
cal defect. Afterwords, we compares the analytical findings
with a numerical solution of Eq. �1�, namely with the reflec-
tion and transmission coefficients. We notice that for large-
fast solitons R+T�1, and no soliton trapping on the topo-
logical impurity occurs. We also point out that, even if the
equation used to compute the transport coefficients is linear,
the nonlinearity still plays a role: it sustains the soliton shape
during its propagation �see Fig. 2�. The use of the linear
approximation for the analysis of the interaction of a fast
soliton with a local defect in the continuous nonlinear
Schrödinger equation has been reported in Ref. �30�, while in
Ref. �31� the transmission properties of narrow solitons �for
which the linear approximation does not hold� in the DNLSE
with a local defect were studied both numerically and with
analytical techniques. Notice that for Bose-Einstein conden-
sates in optical lattices the typical solitons have a spatial
width � larger than the lattice spacing a, e.g., � /a	20 in
Ref. �18�, so that large-fast solitons appear to be an appro-
priate approximation.

In the large-fast soliton regime, the momenta for perfect
reflection and transmission are completely determined by the
spectral properties of the graph G0 �12�. The linear eigen-
value equation to investigate is −�mAn,mEm=En, where
Ai,j =�i,j is the generalized adjacency matrix of the whole
network. The momenta k corresponding to perfect reflection
�R�k�=1� and to perfect transmission �T�k�=1� of a plane
wave are determined by imposing the continuity at sites 0
and �. One obtains R=1 if 2�c cos k coincides with an en-
ergy level of G0, while T=1 if 2�c cos k is an energy level of
the reduced graph Gr �12�. This argument can be easily ex-
tended to the situation where p identical graphs G0 are at-
tached to 0.

IV. TOPOLOGICAL FILTERS

The general result previously stated allows for an identi-
fication of the graph G0 selecting the transmission �or the
reflection� of a particular �quasi�momentum k �a filter�. A
transmission filter can be obtained by inserting a finite chain
of three sites ��, �, and �; see Fig. 3�. The coupling terms
between 0 and � is set to the constant value �c. The matrix
A0 is then given by

A0 = 
 0 �1 0

�1 0 �2

0 �2 0
� , �4�

where �1���,� is the coupling term between the
waveguides � and � and �2���,� is the coupling term be-
tween the waveguides � and �. The eigenvalues of the ma-
trix A0 are �1=0 and �2±= ±��1

2+�2
2. According to the pre-

viously discussed general result, the values of momentum
k1,2

�R� for which one has resonant reflection �R=1� are k1
�R�

=� /2 and k2
�R� defined by

FIG. 2. Soliton propagation obtained from Eq. �1� �for momen-
tum k=1.8, width �0=40, and � given by Eq. �3�� through a linear
chains of two sites �� and �� with coupling term �0,�=�c and
��,�=�c /2. The soliton profile is plotted for z=0, 200, 300, 500,
600 corresponding respectively to �1�–�5�. The predicted reflection
coefficient is close to 1 �see Fig. 3�. Inset �a�: wave-packet evolu-
tion for initial momentum k=0.2, showing that the wave packet
spreads before to hit the topological defect. Inset �b�: densities �E��2
�dashed line� and in G0 vs z for k0=1.8.
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cos k2
�R� = −

��1
2 + �2

2

2�c
�5�

�since we are choosing cos k�0�. With �1
2+�2

2�4�c
2, the

only momentum of perfect reflection is k�R�=� /2, apart from
k=�, which always corresponds to full reflection, since the
soliton velocity �� sin k� is zero. Furthermore, the momen-
tum of perfect transmission is determined by diagonalizing
the reduced adjacency matrix Ar which is given by

Ar =  0 �2

�2 0
� �6�

whose eigenvalues are ±�2. Therefore the selected transmit-
ted momentum is k�T�, defined by

cos k�T� = −
�2

2�c
. �7�

Then, one sees that if �2�2�c, it is not possible to realize a
transmission filter with the discussed inserted network. When
�2�2�c one has a transmission filter: indeed the reflection
coefficient R equals 1 at k=� /2, and reaches the value 0 at
k=k�T� given by Eq. �7�. If the condition �1

2+�2
2�4�c

2 is also
satisfied, then R increases until it reaches the value 1 at k
=k2

�R� given by Eq. �5� �notice that k2
�R��k�T��. For k�k2

�R�, R
decreases till a minimum value �0 and, for a further in-
crease of k, R increases and it reaches 1 at k=�. If the
condition �1

2+�2
2�4�c

2 is not satisfied, then increasing k

�with k�k2
�R��, R monotonically increases and it reaches 1 at

k=�.
As previously discussed, the value of the perfect transmit-

ted momentum does not change if p identical chains are at-
tached in 0, but in this case the filter becomes more efficient.
In the linear approximation, valid for large-fast solitons, the
eigenvalue equation to investigate is

− �
n

�m,nEn = Em �8�

�here m and n are generic sites of the network�. The solution
corresponding to a plane wave coming from the left is on the
sites of the chain Ej =aeikj +be−ikj for j�0 and Ej =ceikj for
j�0, so that =−2�c cos k. The reflection coefficient is
given by R= �b /a�2 and the transmission coefficient by T
= �c /a�2. Denoting con E�,�,� the electric field in the
waveguides �, �, �, when p identical chains are inserted in 0
Eq. �8� for 0, �, �, and � yields, respectively,

− �c�ae−ik + beik + ceik + p��� = �a + b� , �9�

− �c�a + b� − �1�� = ��, �10�

− �1�� − �2�� = ��, �11�

and

− �2�� = ��. �12�

Solving for b /a, Eqs. �9�–�12�, together with the condition
a+b=c, gives

1

R
= 1 +

4 sin2�2k�
p2 1 +

�1
2

�2
2 − 2�c

2�1 + cos�2k��
�2

. �13�

One also gets T=1−R. Equation �13� confirms the qualita-
tive behavior for the reflection coefficient previously dis-
cussed: indeed R�k=� /2�=1 and R�k=��=1. Moreover,
from Eq. �5�, one has cos�2k2

�R��= ��1
2+�2

2� /2�c
2−1, giving

R�k=k2
�R��=1. Similarly, from Eq. �7�, one has cos�2k�T��

=�2
2 /2�c

2−1, giving R�k=k�T��=0.
From Eq. �13� one can also estimate the filter efficiency:

indeed, around k=k�T�, one has R� 1
2C�k−k�T��2, where C

= � �2R
�k2 �

k=k�T�. Then, one can estimate what is the maximum
value of the momentum shift �k=k−k�T� for which one has
R	�, where � quantifies the efficiency of the transmission
filter. From Eq. �13� one gets

C = 8p2�c

�1
�4

: �14�

it follows that the maximum momentum deviation �kMAX is
given by

�kMAX =�2�

C
= �1

�c
�2��

2p
. �15�

From Eq. �15� one sees that one can improve the filter selec-
tivity simply increasing the number p of inserted chains with
length 3; at variance, the selected transmitted momentum k�T�

does not depend on p.

FIG. 3. The reflection coefficient vs the momentum k for a
transmission filter and a reflection filter. A transmission filter can be
obtained by inserting on a site of an infinite chain p linear chains of
three sites ��, �, and ��. The coupling term between two generic
waveguides of the chain is �c. Furthermore, �0,�=��,�=�c and
��,�=�c /2. A reflection filter can be obtained inserting a linear
chains of two sites �� and �� with coupling term between �0,�

=�c and ��,�=�c /2. Stars and circles are numerical results of Eq.
�1� obtained, respectively, for the reflection filter and for the trans-
mission filter �and p=4�. The reflected and the transmitted momen-
tum is �1.8. Solid lines corresponds to the analytical prediction
�13�.
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To implement a reflection filter, i.e., a filter selecting only
a particular k�R� for which T�k�R��=0, one can add, e.g., p
finite chains with L=2 sites inserted in 0. As before, we label
by � and � the two sites of the added chain. We suppose that
the coupling term between 0 and � is �c, while the coupling
term between � and � is ��,���1. The matrix A0 is then
given by

A0 =  0 �1

�1 0
� : �16�

the eigenvalues of the matrix A0 are �±= ±�1. The only value
of the momentum k�R� for which one has resonant reflection
�R=1� is defined by

cos k�R� = −
�1

2�c
. �17�

With �1�2�c, a momentum perfectly reflected exists, apart
from k=�, which always corresponds to full reflection. The
matrix Ar reduces to a single element �Ar=0� and the value at
which T=1 is only k=� /2.

From Eq. �17� one sees that when �1�2�c one has a
reflection filter: indeed the reflection coefficient R equals 0
at k=� /2, and reaches the value 1 at k=k�R� given by Eq.
�17�. For k�k�R�, R decreases till a minimum value �0 and,
for a further increase of k, R increases and it reaches 1 at
k=�.

The corresponding analytical expression for R is obtained
from Eq. �13� setting �2=0:

1

R
= 1 +

4 sin2�2k�
p2 1 −

�1
2

2�c
2�1 + cos�2k��

�2

. �18�

Equation �13� confirms the qualitative behavior for the re-
flection coefficient previously discussed: indeed limk→�/2 R
=0 and R�k=��=1. Moreover, from Eq. �17�, one has
cos�2k�R��=�1

2 /2�c
2−1, giving R�k=k�R��=1. The filter effi-

ciency can be estimated by observing that around k=k�R� one
has R�1+ 1

2C�k−k�R��2, where C= � �2R
�k2 �

k=k�R�. We now com-
pute the maximum value of the momentum shift �k=k
−k�R� for which one has R�1−� �i.e., T	��, where � quan-
tifies the efficiency of the reflection filter. From Eq. �18� one
gets

C = −
128

p2 1 −
�1

2

4�c
2�2

: �19�

it follows that the maximum momentum deviation �kMAX is
given by

�kMAX =� 2�

�C�
=

p��

4
� �c

2

4�c
2 − �1

2 . �20�

From Eq. �20� one sees that increasing the number p of in-
serted chains with length 2, the filter selectivity make worse;
we notice that this result is the opposite of what happens for
the transmission filter previously discussed �compare with
Eq. �15��. Also for the reflection filter, the selected reflected
momentum k�R� does not depend on p.

The transmission properties of the transmission and re-
flection filters are shown in Fig. 3. The analytical results are
compared with numerical findings: as discussed in Sec. II, in
the numerical simulations we consider as initial condition
�z=0� a Gaussian soliton, far left from 0, moving towards
n=0 �sin k�0�, and with a width �0 related to the nonlinear
coefficient � through Eq. �3�: in the simulations we used
�0=40. At a position z well after the soliton scattering on the
topological impurity, we evaluate the reflection and transmis-
sion coefficients R and T using the formulas: R
=�n�0�En�z��2 and T=�n�0�En�z��2. Figure 3 evidences the
good agreement between numerical findings and analytical
results, and the good efficiency of the discussed filters.

Finally, using the obtained results, one is also able to re-
alize a high-pass filter which allows the transmission of high
velocity solitons �i.e., k close to � /2 and high soliton veloci-
ties� and a low-pass filter transmitting the low velocity soli-
tons �i.e., k close to � and low velocities�. A possible net-
work realizing a high-pass filter is obtained by attaching p
finite chains with length 2 and all coupling terms fixed to �c.
The analytical expression for the reflection coefficients R is
obtained by setting �1=�c and �2=0 in Eq. �13�. This struc-
ture acts as a high-pass, with a cutoff momentum �and an
efficiency� depending on p. In Fig. 4, R vs k is plotted for
p=7. On the other hand, the low-pass effect can be obtained
with a linear chain of three sites ��, �, and �� inserted in 0
and coupling terms �c, �1, �2, respectively between 0 and �,
� and �, � and �. If �2=2�c, then T=0 for k=� /2 and
limk→� R=0 �although R���=1�. Therefore one has a low-
pass with the cutoff momenta depending on �1 �see Fig. 4,
where the values �1=�c and �2=2�c are used�.

V. CONCLUSIONS

In conclusion, we studied the discrete nonlinear
Schrödinger equation on an inhomogeneous structure, ob-

FIG. 4. The reflection coefficient vs the momentum k for a
low-pass filter and a high-pass filter. Stars and circles are numerical
results of Eq. �1� obtained for the for the high-pass �and p=7� and
for the low-pass. Solid lines corresponds to the analytical prediction
�13�.
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tained attaching a finite graph G0 to a site of a linear chain.
We showed that one can determine the topology and the
parameters of G0, giving reflection and transmission filters,
or low-pass/high-pass filters. Our results apply to solitons
with a length scale much larger than the typical distance
between waveguides: as a promising future work to be done,
we mention that the study of solitons and breathers at the
same scale of the interguide distance should give an even
richer variety of phenomena arising from the interplay be-
tween discreteness, nonlinearity and topology.

The results obtained show the remarkable influence of
topology on nonlinear dynamics, and apply in general to

soliton propagation in discrete networks whose shape is con-
trollable. As these results suggest, we feel that it is now both
timely and highly desirable to develop the investigation of
nonlinear models on general inhomogeneous networks, since
one should expect new and interesting phenomena arising
from the interplay between nonlinearity and topology.
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